Chronic Stress Contributes to Cognitive Dysfunction and Hippocampal Metabolic Abnormalities in APP/PS1 Mice.
نویسندگان
چکیده
BACKGROUND/AIMS Stress response is determined by the brain, and the brain is a sensitive target for stress. Our previous experiments have confirmed that once the stress response is beyond the tolerable limit of the brain, particularly that of the hippocampus, it will have deleterious effects on hippocampal structure and function; however, the metabolic mechanisms for this are not well understood. METHODS Here, we used morris water maze, elisa and gas chromatography-time of flight/mass spectrometry to observe the changes in cognition, neuropathology and metabolomics in the hippocampus of APP/PS1 mice and wild-type (C57) mice caused by chronic unpredictable mild stress (CUMS), we also further explored the correlation between cognition and metabolomics. RESULTS We found that 4 weeks of CUMS aggravated cognitive impairment and increased amyloid-β deposition in APP/PS1 mice, but did not affect C57 mice. Under non-stress conditions, compared with C57 mice, there were 8 different metabolites in APP/PS1 mice. However, following CUMS, 3 different metabolites were changed compared with untreated C57 mice. Compared to APP/PS1 mice, there were 7 different metabolites in APP/PS1+CUMS mice. Among these alterations, 3-hydroxybutyric acid, valine, serine, beta-alanine and o-phosphorylethanolamine, which are involved in sphingolipid metabolism, synthesis and degradation of ketone bodies, and amino acid metabolism. CONCLUSION The results indicate that APP/PS1 mice are more vulnerable to stress than C57 mice, and the metabolic mechanisms of stress-related cognitive impairment in APP/PS1 mice are related to multiple pathways and networks, including sphingolipid metabolism, synthesis and degradation of ketone bodies, and amino acid metabolism.
منابع مشابه
Amyloid-beta deposition is associated with decreased hippocampal glucose metabolism and spatial memory impairment in APP/PS1 mice.
In Alzheimer disease (AD) patients, early memory dysfunction is associated with glucose hypometabolism and neuronal loss in the hippocampus. Double transgenic (Tg) mice co-expressing the M146L presenilin 1 (PS1) and K670N/M671L, the double "Swedish" amyloid precursor protein (APP) mutations, are a model of AD amyloid-beta deposition (Abeta) that exhibits earlier and more profound impairments of...
متن کاملAge- and Brain Region-Specific Changes of Glucose Metabolic Disorder, Learning, and Memory Dysfunction in Early Alzheimer’s Disease Assessed in APP/PS1 Transgenic Mice Using 18F-FDG-PET
Alzheimer's disease (AD) is a leading cause of dementia worldwide, associated with cognitive deficits and brain glucose metabolic alteration. However, the associations of glucose metabolic changes with cognitive dysfunction are less detailed. Here, we examined the brains of APP/presenilin 1 (PS1) transgenic (Tg) mice aged 2, 3.5, 5 and 8 months using 18F-labed fluorodeoxyglucose (18F-FDG) micro...
متن کاملEffects of short-term Western diet on cerebral oxidative stress and diabetes related factors in APP x PS1 knock-in mice.
A chronic high fat Western diet (WD) promotes a variety of morbidity factors although experimental evidence for short-term WD mediating brain dysfunction remains to be elucidated. The amyloid precursor protein and presenilin-1 (APP x PS1) knock-in mouse model has been demonstrated to recapitulate some key features of Alzheimer's disease pathology, including amyloid-beta (Abeta) pathogenesis. In...
متن کاملEarly-Life Stress Does Not Aggravate Spatial Memory or the Process of Hippocampal Neurogenesis in Adult and Middle-Aged APP/PS1 Mice
Life-time experiences are thought to influence the risk to develop the neurodegenerative disorder Alzheimer's disease (AD). In particular, early-life stress (ES) may modulate the onset and progression of AD. There is recent evidence by our group and others that AD-related neuropathological progression and the associated neuroimmune responses are modulated by ES in the classic APPswe/PS1dE9 mous...
متن کاملAcute Down-regulation of BDNF Signaling Does Not Replicate Exacerbated Amyloid-β Levels and Cognitive Impairment Induced by Cholinergic Basal Forebrain Lesion
Degeneration of basal forebrain cholinergic neurons (BFCNs) precedes hippocampal degeneration and pathological amyloid-beta (Aβ) accumulation, and underpins the development of cognitive dysfunction in sporadic Alzheimer's disease (AD). We hypothesized that degeneration of BFCNs causes a decrease in neurotrophin levels in innervated brain areas, which in turn promotes the development of Aβ patho...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology
دوره 41 5 شماره
صفحات -
تاریخ انتشار 2017